<progress id="v9r7l"><cite id="v9r7l"><ruby id="v9r7l"></ruby></cite></progress><cite id="v9r7l"><strike id="v9r7l"><progress id="v9r7l"></progress></strike></cite><var id="v9r7l"></var>
<cite id="v9r7l"></cite>
<var id="v9r7l"></var>
<cite id="v9r7l"><dl id="v9r7l"><progress id="v9r7l"></progress></dl></cite>
<menuitem id="v9r7l"><dl id="v9r7l"><listing id="v9r7l"></listing></dl></menuitem><var id="v9r7l"></var>
<cite id="v9r7l"><dl id="v9r7l"></dl></cite>
<cite id="v9r7l"><strike id="v9r7l"><listing id="v9r7l"></listing></strike></cite>
<var id="v9r7l"></var>
      我的主頁      中南大學      能源科學與工程學院      
登錄   |   English
冷立健
個人簡介
姓名:冷立健

系所:新能源科學與工程系

職稱:教授

郵箱:l.leng2019@csu.edu.cn


男,1987年生,博士,特聘教授,2017年湖南大學工學博士畢業,博士期間曾在英國University College London聯合培養;2017年10月被南昌大學聘為高層次人才(學科方向帶頭人)、特聘教授;2019年12月入職中南大學,被破格聘用為特聘教授。

長期從事生物質多聯產、生物質能源及相關環境問題的研究,主持國家自然科學基金青年基金項目1項、江西省重大科技專項子課題1項、江西省自然科學基金青年基金項目1項、中南大學特聘教授啟動經費項目1項;發表SCI學術論文80余篇,其中,以第一作者或通訊作者發表SCI論文30余篇(其中90%為JCR一區),ESI 1%論文4篇,ESI 0.1%論文2篇,Google citation 3000余次,H指數31;獲授權國家發明專利10余項;指導本科生創新項目4項,其中國家級1項;曾指導學生獲得節能減排社會實踐與科技競賽國賽三等獎(2018)、挑戰杯省二等獎等國家級、省級或校級獲獎10余項。是Energy、Fuel、Fuel Processing technology、Applied Energy、Science of the Total Environment和Bioresource Technology等能源環境領域數十個SCI期刊的特邀審稿人。曾獲湖南省優秀畢業生、湖南大學優秀博士學位論文、研究生國家獎學金、高廷耀環?萍及l展基金會青年博士生杰出人才獎學金、湖南大學長江環境獎學金、湖南大學博士研究生校長獎學金(連續3年)、南昌大學優秀班導師等榮譽或獎學金。


教育經歷
2013.09-2017.06:湖南大學,博士

2016.04-2017.04:University College London (UCL) ,博士聯合培養

2010.09-2012.12:湖南大學,碩士

2006.09-2010.06:長沙理工大學,本科

工作經歷
2019.12-至今:中南大學,能源科學與工程學院,特聘教授

2017.10-2019.12:南昌大學,資源環境與化工學院,特聘教授(學科方向帶頭人)

科研方向
研究方向:

生物質/有機廢物熱化學能源化轉化(水熱液化/碳化、(微波)熱解等);

熱化學能源化利用相關環境問題研究(如重金屬、氮、磷、硫的遷移轉化、排放等);

生物炭應用(儲碳與CO2固定等);

生物油(微乳)提質加工與發動機應用。


主持項目:

中南大學啟動經費,生物質多聯產研究,經費120萬元,2020-2024;

國家自然科學基金青年基金,微藻生物質能-水熱水相資源化研究,經費25萬元,2019-2021;

江西省重大科技專項(子課題),畜禽糞污厭氧發酵-沼液資源化研究,經費50萬元,2019-2021;

江西省自然科學基金青年基金項目,微藻生物質能-水熱過程中氮遷移轉化研究,經費6萬元,2019-2020;

南昌大學啟動經費,生物質多聯產研究,經費200萬元,2017-2019。


學術成果

第一作者或通訊作者論文:

2020年

1.通訊 Algal biorefinery to value-added products by using combined processes based on thermochemical conversion: A review. Algal Research 2020.47, 101819

2.一作 Nitrogen containing functional groups of biochar: an overview. Bioresource Technology 2020. 298, 122286.
3.通訊 Aqueous phase recirculation during hydrothermal carbonization of microalgae and soybean straw: A comparison study. Bioresource Technology 2020. 298, 122502.
4.一作 Use of microalgae-based technology for the removal of antibiotics from wastewater: A review. Chemosphere 2020. 238, 124680.

2019年
1.一作 Surfactant assisted upgrading fuel properties of waste cooking oil biodiesel. Journal of Cleaner Production 2019. 210, 1376-1384.
2.一作 Meat & bone meal (MBM) incineration ash for phosphate removal from wastewater and afterward phosphorus recovery. Journal of Cleaner Production 2019. 238, 117960.
3.一作 Biochar stability assessment by incubations and modelling: methods, drawbacks and recommendations. Science of the Total Environment 2019. 664, 11–23
4.一作 Biochar stability assessment methods: A review. Science of the Total Environment 2019. 647, 210-222.
5.一作 Characterisation of ashes from UK waste biomass power plant and phosphorus recovery. Science of the Total Environment 2019. 690, 573–583.
6.通訊 Screening mi crowave susceptors for microwave-assisted pyrolysis of lignin: Comparison of product yield and chemical profile. Journal of Analytical and Applied Pyrolysis 2019, 142, 104623.
7.一作 Biosurfactant rhamnolipid assisted microemulsification of bio-oil components in diesel. Energy Sources 2019. 41:829–43.
8.一作 Determination of the activation energies of biodieselmicroemulsion and biodiesel blends. Energy Sources 2019. 1-10.

2018年
1.一作 Use of microalgae to recycle nutrients in aqueous phase derived from hydrothermal liquefaction process. Bioresource Technology. 2018. 256. 529-542.
2.一作 Beneficial synergistic effect on bio-oil production from co-liquefaction of sewage sludge and lignocellulosic biomass. Bioresource Technology. 2018. 251: 49–56.
3.一作 Bio-oil upgrading by emulsification/microemulsification: A review. Energy 2018. 161, 214-232.
4.一作 The migration and transformation behavior of heavy metals during co-liquefaction of municipal sewage sludge and lignocellulosic biomass. Bioresource Technology. 2018. 259. 156-163.
5.一作 et al., Biodiesel microemulsion upgrading and thermogravimetric study of bio-oil produced by liquefaction of different sludges. Energy 2018. 153, 1061–1072.
6.共同一作 A comparative study between fungal pellet- and spore-assisted microalgae harvesting methods for algae bioflocculation. Bioresource Technology. 2018. 259. 181-190.
7.一作 An overview of the effect of pyrolysis process parameters on biochar stability Bioresource Technology 2018. 270, 627-642.
8.一作 2018. Chemical compositions and wastewater properties of aqueous phase (wastewater) produced from hydrothermal treatment of wet biomass: A review. Energy Sources 2018. 2648–2659.


2016年
1.一作 Pyrolysis and combustion kinetics of glycerol-in-diesel hybrid fuel using thermogravimetric analysis. Fuel 2016. 182, 502–508. IF 2018 =5.128
2.一作 Study on demetalization of sewage sludge by sequential extraction before liquefaction for the production of cleaner bio-oil and bio-char. Bioresource Technology, 2016. 200: 320-327.

2015年
1.一作 The comparison of oxidative thermokinetics between emulsion and microemulsion diesel fuel. Energy conversion and management. 2015. 101: 364–370.
2.一作 Characterization of liquefaction bio-oil from sewage sludge and its solubilization in diesel microemulsion. Energy. 2015. 82: 218–228.
3.一作 Surface characteristics of rice husk derived bio-char and cationic dye (Malachite green) adsorption. Fuel. 2015. 155: 77–85.
4.一作 Characterization and application of bio-chars from liquefaction of microalgae, lignocellulosic biomass and sewage sludge. Fuel Processing Technology. 2015. 129: 8-14.
5.一作 Rhamnolipid based glycerol-in-diesel microemulsion fuel: Formation and characterization. Fuel. 2015. 147: 76–81.
6.一作 Bio-char derived from sewage sludge by liquefaction: characterization and application for dye adsorption. Applied Surface Science. 2015. 346: 223–231.
7.一作 Speciation and environmental risk assessment of heavy metal in bio-oil from liquefaction/pyrolysis of sewage sludge. Chemosphere. 2015. 120: 645–652.
8.一作 Distribution behavior and risk assessment of metals in bio-oils produced by liquefaction/pyrolysis of sewage sludge. Environmental Science Pollution Research International. 2015. 22:18945–55.

2014年
1.一作 The migration and transformation behavior of heavy metals during the liquefaction process of sewage sludge. Bioresource Technology. 2014. 167: 144-150.


彩票在线注册网址